Adsense HTML/JavaScript

Sunday, May 15, 2022

BLE UART communication between ESP32-S3 (arduino-esp32) and HC-42 BLE Module

This post show how to implement BLE UART communication between NodeMCU ESP-S3-12K-Kit (in Arduino framework usiing arduino-esp32) and HC-42 BLE Module.

For HC-42 BLE Module, refer to last post "HC-42 BLE 5 Serial Port Communication Module".

For ESP-S3-12K-Kit (arduino-esp32 2.0.3) side, basically it is modified from "ESP32 BLE Arduino" > "BLE_client" example.

Note that in HC-42:
- Search UUID: FFF0
- Service UUID: FFE0
- Transparent data transmission UUID: FFE1

We have to follow it in arduino code in ESP-S3-12K-Kit.


ESP32S3_BLE_client_HC42.ino, modified from "ESP32 BLE Arduino" > "BLE_client" example, for HC-42.

/**
 * A BLE client example that is rich in capabilities.
 * There is a lot new capabilities implemented.
 * author unknown
 * updated by chegewara
 */

#include "BLEDevice.h"
//#include "BLEScan.h"

#define SEARCH_UUID "FFF0"
#define SERVICE_UUID "FFE0"
#define TRAN_UUID "FFE1"

// The remote service we wish to connect to.
static BLEUUID searchUUID(SEARCH_UUID);
static BLEUUID serviceUUID(SERVICE_UUID);
// The characteristic of the remote service we are interested in.
static BLEUUID    charUUID(TRAN_UUID);

static boolean doConnect = false;
static boolean connected = false;
static boolean doScan = false;
static BLERemoteCharacteristic* pRemoteCharacteristic;
static BLEAdvertisedDevice* myDevice;

static void notifyCallback(
  BLERemoteCharacteristic* pBLERemoteCharacteristic,
  uint8_t* pData,
  size_t length,
  bool isNotify) {
    Serial.print("Notify callback for characteristic ");
    Serial.print(pBLERemoteCharacteristic->getUUID().toString().c_str());
    Serial.print(" of data length ");
    Serial.println(length);
    Serial.print("data: ");
    Serial.println((char*)pData);
}

class MyClientCallback : public BLEClientCallbacks {
  void onConnect(BLEClient* pclient) {
  }

  void onDisconnect(BLEClient* pclient) {
    connected = false;
    Serial.println("onDisconnect");
  }
};

bool connectToServer() {
    Serial.print("Forming a connection to ");
    Serial.println(myDevice->getAddress().toString().c_str());
    
    BLEClient*  pClient  = BLEDevice::createClient();
    Serial.println(" - Created client");

    pClient->setClientCallbacks(new MyClientCallback());

    // Connect to the remove BLE Server.
    pClient->connect(myDevice); // if you pass BLEAdvertisedDevice
				// instead of address, it will be
				// recognized type of peer device 
				// address (public or private)
    Serial.println(" - Connected to server");
    pClient->setMTU(517); //set client to request maximum MTU from
						  //server (default is 23 otherwise)
  
    // Obtain a reference to the service we are after in the remote 
	// BLE server.
    BLERemoteService* pRemoteService = pClient->getService(serviceUUID);
    if (pRemoteService == nullptr) {
      Serial.print("Failed to find our service UUID: ");
      Serial.println(serviceUUID.toString().c_str());
      pClient->disconnect();
      return false;
    }
    Serial.println(" - Found our service");


    // Obtain a reference to the characteristic in the service of
	// the remote BLE server.
    pRemoteCharacteristic = pRemoteService->getCharacteristic(charUUID);
    if (pRemoteCharacteristic == nullptr) {
      Serial.print("Failed to find our characteristic UUID: ");
      Serial.println(charUUID.toString().c_str());
      pClient->disconnect();
      return false;
    }
    Serial.println(" - Found our characteristic");

    // Read the value of the characteristic.
    if(pRemoteCharacteristic->canRead()) {
      std::string value = pRemoteCharacteristic->readValue();
      Serial.print("The characteristic value was: ");
      Serial.println(value.c_str());
    }

    if(pRemoteCharacteristic->canNotify())
      pRemoteCharacteristic->registerForNotify(notifyCallback);

    connected = true;
    return true;
}
/**
 * Scan for BLE servers and find the first one that advertises 
 * the service we are looking for.
 */
class MyAdvertisedDeviceCallbacks: public BLEAdvertisedDeviceCallbacks {
 /**
   * Called for each advertising BLE server.
   */
  void onResult(BLEAdvertisedDevice advertisedDevice) {
    Serial.print("BLE Advertised Device found: ");
    Serial.println(advertisedDevice.toString().c_str());

    // We have found a device, let us now see if it contains the service
	// we are looking for.
    if (advertisedDevice.haveServiceUUID() && 
		advertisedDevice.isAdvertisingService(searchUUID)) {

      BLEDevice::getScan()->stop();
      myDevice = new BLEAdvertisedDevice(advertisedDevice);
      doConnect = true;
      doScan = true;

    } // Found our server
  } // onResult
}; // MyAdvertisedDeviceCallbacks


void setup() {
  Serial.begin(115200);
  Serial.println("Starting Arduino BLE Client application...");
  BLEDevice::init("");

  // Retrieve a Scanner and set the callback we want to use to 
  // be informed when we have detected a new device. 
  // Specify that we want active scanning and start the
  // scan to run for 5 seconds.
  BLEScan* pBLEScan = BLEDevice::getScan();
  pBLEScan->setAdvertisedDeviceCallbacks(new MyAdvertisedDeviceCallbacks());
  pBLEScan->setInterval(1349);
  pBLEScan->setWindow(449);
  pBLEScan->setActiveScan(true);
  pBLEScan->start(5, false);
} // End of setup.


// This is the Arduino main loop function.
void loop() {

  // If the flag "doConnect" is true then we have scanned for 
  // and found the desired BLE Server with which we wish to connect.  
  // Now we connect to it.  Once we are connected we set the connected
  // flag to be true.
  if (doConnect == true) {
    if (connectToServer()) {
      Serial.println("We are now connected to the BLE Server.");
    } else {
      Serial.println("We have failed to connect to the server; there is nothin more we will do.");
    }
    doConnect = false;
  }

  // If we are connected to a peer BLE Server, 
  // update the characteristic each time we are reached
  // with the current time since boot.
  if (connected) {
    String newValue = "Time since boot: " + String(millis()/1000)  +"\n";
    Serial.println("Setting new characteristic value to \"" + newValue + "\"");
    
    // Set the characteristic's value to be the array of bytes
	// that is actually a string.
    pRemoteCharacteristic->writeValue(newValue.c_str(), newValue.length());
  }else if(doScan){
    BLEDevice::getScan()->start(0); // this is just example to start scan 
				    // after disconnect, most likely there
				    // is better way to do it in arduino
  }
  
  delay(1000); // Delay a second between loops.
} // End of loop



ESP32S3_BLE_uart_client_HC42.ino, bi-directional BLE UART communication.
/**
 * A BLE UART client example run on ESP32-S3,
 * act as client, connect to HC-42, to establish
 * BLE UART communication.
 *
 * Modified from "ESP32 BLE Arduino" > "BLE_client"
 */

#include "BLEDevice.h"
//#include "BLEScan.h"

#define SEARCH_UUID "FFF0"
#define SERVICE_UUID "FFE0"
#define TRANS_UUID "FFE1"

// The remote service we wish to connect to.
static BLEUUID searchUUID(SEARCH_UUID);
static BLEUUID serviceUUID(SERVICE_UUID);
// The characteristic of the remote service we are interested in.
static BLEUUID    charUUID(TRANS_UUID);

static boolean doConnect = false;
static boolean connected = false;
static boolean doScan = false;
static BLERemoteCharacteristic* pRemoteCharacteristic;
static BLEAdvertisedDevice* myDevice;

static void notifyCallback(
  BLERemoteCharacteristic* pBLERemoteCharacteristic,
  uint8_t* pData,
  size_t length,
  bool isNotify) {

    if (length > 0){
      Serial.printf("%i :\t", length);
      
      for (int i=0; i<length; i++)
          Serial.print((char) pData[i]);

      Serial.println();
    }
}

class MyClientCallback : public BLEClientCallbacks {
  void onConnect(BLEClient* pclient) {
  }

  void onDisconnect(BLEClient* pclient) {
    connected = false;
    Serial.println("onDisconnect");
  }
};

bool connectToServer() {
    Serial.print("Forming a connection to ");
    Serial.println(myDevice->getAddress().toString().c_str());
    
    BLEClient*  pClient  = BLEDevice::createClient();
    Serial.println(" - Created client");

    pClient->setClientCallbacks(new MyClientCallback());

    // Connect to the remove BLE Server.
    pClient->connect(myDevice); // if you pass BLEAdvertisedDevice 
				// instead of address, it will be 
				// recognized type of peer device 
				// address (public or private)
    Serial.println(" - Connected to server");
    pClient->setMTU(517); //set client to request maximum MTU from server 
                          //(default is 23 otherwise)
  
    // Obtain a reference to the service we are after in the 
	// remote BLE server.
    BLERemoteService* pRemoteService = pClient->getService(serviceUUID);
    if (pRemoteService == nullptr) {
      Serial.print("Failed to find our service UUID: ");
      Serial.println(serviceUUID.toString().c_str());
      pClient->disconnect();
      return false;
    }
    Serial.println(" - Found our service");


    // Obtain a reference to the characteristic in the service 
	// of the remote BLE server.
    pRemoteCharacteristic = pRemoteService->getCharacteristic(charUUID);
    if (pRemoteCharacteristic == nullptr) {
      Serial.print("Failed to find our characteristic UUID: ");
      Serial.println(charUUID.toString().c_str());
      pClient->disconnect();
      return false;
    }
    Serial.println(" - Found our characteristic");

    // Read the value of the characteristic.
    if(pRemoteCharacteristic->canRead()) {
      std::string value = pRemoteCharacteristic->readValue();
      Serial.print("The characteristic value was: ");
      Serial.println(value.c_str());
    }

    if(pRemoteCharacteristic->canNotify())
      pRemoteCharacteristic->registerForNotify(notifyCallback);

    connected = true;
    return true;
}
/**
 * Scan for BLE servers and find the first one that advertises 
 * the service we are looking for.
 */
class MyAdvertisedDeviceCallbacks: public BLEAdvertisedDeviceCallbacks {
 /**
   * Called for each advertising BLE server.
   */
  void onResult(BLEAdvertisedDevice advertisedDevice) {
    Serial.print("BLE Advertised Device found: ");
    Serial.println(advertisedDevice.toString().c_str());

    // We have found a device, let us now see if it contains the service 
	// we are looking for.
    if (advertisedDevice.haveServiceUUID() 
        && advertisedDevice.isAdvertisingService(searchUUID)) {

      BLEDevice::getScan()->stop();
      myDevice = new BLEAdvertisedDevice(advertisedDevice);
      doConnect = true;
      doScan = true;

    } // Found our server
  } // onResult
}; // MyAdvertisedDeviceCallbacks


void setup() {
  Serial.begin(115200);
  delay(1000);    //it's seem that adding delay here make it more stable
  Serial.println("Starting Arduino BLE Client application...");
  BLEDevice::init("");

  // Retrieve a Scanner and set the callback we want to use to be 
  // informed when we have detected a new device.  
  // Specify that we want active scanning and start the scan to 
  // run for 5 seconds.
  BLEScan* pBLEScan = BLEDevice::getScan();
  pBLEScan->setAdvertisedDeviceCallbacks(new MyAdvertisedDeviceCallbacks());
  pBLEScan->setInterval(1349);
  pBLEScan->setWindow(449);
  pBLEScan->setActiveScan(true);
  pBLEScan->start(5, false);
} // End of setup.


// This is the Arduino main loop function.
void loop() {

  // If the flag "doConnect" is true then we have scanned for 
  // and found the desired BLE Server with which we wish to connect.  
  // Now we connect to it.  Once we are connected we set the connected 
  //flag to be true.
  if (doConnect == true) {
    if (connectToServer()) {
      Serial.println("We are now connected to the BLE Server.");
    } else {
      Serial.println("We have failed to connect to the server; there is nothin more we will do.");
    }
    doConnect = false;
  }

  // If we are connected to a peer BLE Server, 
  // update the characteristic each time we are reached
  // with the current time since boot.
  if (connected) {

    if (Serial.available()) {
      String newValue = "";
      while(Serial.available()){
        char c = Serial.read();
        newValue += c;
      }
      newValue += "\n";
      Serial.println(newValue);
      pRemoteCharacteristic->writeValue(newValue.c_str(), newValue.length());
    } 
  }else if(doScan){
    BLEDevice::getScan()->start(0); // this is just example to start scan 
				    // after disconnect, most likely there 
				    // is better way to do it in arduino
  }
  
  delay(1000); // Delay a second between loops.
} // End of loop



Saturday, May 14, 2022

HC-42 BLE 5 Serial Port Communication Module

The HC-42 Bluetooth serial communication module is a new generation of data transmission module based on Bluetooth Specification V5.0 BLE Bluetooth protocol. It can be set using AT Command.


ref:
User Manual for HC-42 Bluetooth Serial Port Module




Connection between HC-42 and FTDI232 (USB to serial UART adapter)

				connect to host computer
				(Raspberry Pi)
	                          |||| 
	+-------------+		+-------------+
        |HC-42        |		| FTDI232     |
	|             |		| (VCC=3.3V)  |
	|             |		|             |
	|             |		|             |
	|             |		|             |
	|             |		|             |
	| S           |		|             |
	| T           |		|             |
	| A R T G V K |		| D     V C G |
	| T X X N C E |		| T R T C T N |
	| E D D D C Y |		| R X X C S D |
	+-------------+		+-------------+
	    | | | |                 | | |   |
	    | | | +-----------------|-|-+   |
	    | | +-------------------|-|-----+
	    | +---------------------+ |                         
	    +-------------------------+                       
	                            


next:
BLE UART communication between ESP32-S3 (arduino-esp32) and HC-42 BLE Module

Thursday, May 12, 2022

arduino-esp32 2.0.3 add support for ESP32-S3, to develope in Arduino IDE.

With arduino-esp32 2.0.3, ESP32-S3 support added now. (~release notice)

To install arduino-esp32 to Arduino IDE:
(Install arduino-esp32 2 on Arduino IDE, to program ESP32-C3/S2/S3)

In MENU > File > Preference, make sure "https://raw.githubusercontent.com/espressif/arduino-esp32/gh-pages/package_esp32_index.json" is added in Additional Board Manager URLs field.


In MENU > Tools > Board > Boards Manager...
Now you can search and install for "esp32 by Espressif Systems"


Then you can select ESP32S3 Dev Module



Try run on NodeMCU ESP-S3-12K-Kit

ESP32S3_info.ino, get ESP info.
#include <Esp.h>

void setup() {
  delay(500);
  Serial.begin(115200);
  delay(500);
  Serial.println("\n\n================================");
  Serial.printf("Chip Model: %s\n", ESP.getChipModel());
  Serial.printf("Chip Revision: %d\n", ESP.getChipRevision());
  Serial.printf("with %d core\n", ESP.getChipCores());
  Serial.printf("Flash Chip Size : %d \n", ESP.getFlashChipSize());
  Serial.printf("Flash Chip Speed : %d \n", ESP.getFlashChipSpeed());

  esp_chip_info_t chip_info;
  esp_chip_info(&chip_info);
  Serial.printf("\nFeatures included:\n %s\n %s\n %s\n %s\n %s\n",
      (chip_info.features & CHIP_FEATURE_EMB_FLASH) ? "embedded flash" : "",
      (chip_info.features & CHIP_FEATURE_WIFI_BGN) ? "2.4GHz WiFi" : "",
      (chip_info.features & CHIP_FEATURE_BLE) ? "Bluetooth LE" : "",
      (chip_info.features & CHIP_FEATURE_BT) ? "Bluetooth Classic" : "",
      (chip_info.features & CHIP_FEATURE_IEEE802154) ? "IEEE 802.15.4" : "");
  
  Serial.println();


  Serial.println();
  Serial.println("\n- end of setup() -");

}

void loop() {
  // put your main code here, to run repeatedly:

}




ESP32S3_pins.ino, list pins with pre-defined function.
void setup() {
  // put your setup code here, to run once:
  delay(500);
  Serial.begin(115200);
  delay(500);
  Serial.println("\n\n================================");
  Serial.printf("Chip Model: %s %s %d\n",
                ESP.getChipModel(),
                "rev.",
                (int)ESP.getChipRevision());
  Serial.printf("with number of cores = %d\n", (int)ESP.getChipCores());
  Serial.println("================================");

#ifdef EXTERNAL_NUM_INTERRUPTS
  Serial.printf("EXTERNAL_NUM_INTERRUPTS = %d\n", EXTERNAL_NUM_INTERRUPTS);
#endif
#ifdef NUM_DIGITAL_PINS
  Serial.printf("NUM_DIGITAL_PINS = %d\n", NUM_DIGITAL_PINS);
#endif
#ifdef NUM_ANALOG_INPUTS
  Serial.printf("NUM_ANALOG_INPUTS = %d\n", NUM_ANALOG_INPUTS);
#endif
  Serial.println();
  Serial.printf("Default TX:   %d\n", TX);
  Serial.printf("Default RX:   %d\n", RX);
  Serial.println();
  Serial.printf("Default SDA:  %d\n", SDA);
  Serial.printf("Default SCL:  %d\n", SCL);
  Serial.println();
  Serial.printf("Default SS:   %d\n", SS);
  Serial.printf("Default MOSI: %d\n", MOSI);
  Serial.printf("Default MISO: %d\n", MISO);
  Serial.printf("Default SCK:  %d\n", SCK);

  Serial.println();
  Serial.printf("A0\tA1\tA2\tA3\tA4\tA5\tA6\tA7\tA8\tA9\n");
  Serial.printf("%d\t%d\t%d\t%d\t%d\t%d\t%d\t%d\t%d\t%d\n", 
                 A0, A1, A2, A3, A4, A5, A6, A7, A8, A9);
  Serial.println();
  Serial.printf("A10\tA11\tA12\tA13\tA14\tA15\tA16\tA17\tA18\tA19\n");
  Serial.printf("%d\t%d\t%d\t%d\t%d\t%d\t%d\t%d\t%d\t%d\n", 
                 A10, A11, A12, A13, A14, A15, A16, A17, A18, A19);
  Serial.println();

  Serial.printf("T1\tT2\tT3\tT4\tT5\tT6\tT7\tT8\tT9\tT10\n");
  Serial.printf("%d\t%d\t%d\t%d\t%d\t%d\t%d\t%d\t%d\t%d\n", 
                 T1, T2, T3, T4, T5, T6, T7, T8, T9, T10);
  Serial.println();
  Serial.printf("T11\tT12\tT13\tT14\n");
  Serial.printf("%d\t%d\t%d\t%d\n", 
                 T11, T12, T13, T14);

  Serial.println("================================");
}

void loop() {
  // put your main code here, to run repeatedly:

}



ESP32S3_RGB.ino, control ESP-S3-12K-Kit on-board RGB LED.
#define LED_R 5
#define LED_G 6
#define LED_B 7

void setup() {
  delay(500);
  Serial.begin(115200);
  delay(500);
  pinMode(LED_R, OUTPUT);
  pinMode(LED_G, OUTPUT);
  pinMode(LED_B, OUTPUT);
  digitalWrite(LED_R, LOW);
  digitalWrite(LED_G, LOW);
  digitalWrite(LED_B, LOW);
  delay(1000);
  digitalWrite(LED_R, HIGH);
  digitalWrite(LED_G, HIGH);
  digitalWrite(LED_B, HIGH);
  delay(1000);
  digitalWrite(LED_R, LOW);
  digitalWrite(LED_G, LOW);
  digitalWrite(LED_B, LOW);
  delay(1000);

}

void loop() {
  digitalWrite(LED_R, HIGH);
  delay(2000);
  digitalWrite(LED_R, LOW);
  digitalWrite(LED_G, HIGH);
  delay(2000);
  digitalWrite(LED_G, LOW);
  digitalWrite(LED_B, HIGH);
  delay(2000);
  digitalWrite(LED_B, LOW);
  delay(2000); 
}




more exercise of ESP32-S3 (arduino-esp32):


Wednesday, May 4, 2022

ESP32-C3/MicroPython exercise: update time using ntptime

 MicroPython (v1.18 ) exercise run on ESP32-C3-DevKitM-1, to update time using utptime.

"""
MicroPython/ESP32C3 exercise run on ESP32-C3-DevKitM-1,
about time.
"""
import uos
import usys
import time

import network
import ntptime

TIME_OFFSET = +8 * 60 *60   #offset for your timezone

print("\n====================================")
print(usys.implementation[0], uos.uname()[3],
      "\nrun on", uos.uname()[4])
print("====================================\n")

def connect_and_update_ntptime():
    wlan = network.WLAN(network.STA_IF)
    wlan.active(True)
    wlan.disconnect()
    time.sleep(1)
    if not wlan.isconnected():
        print('connecting to network...')
        wlan.connect('ssid', 'password')
        while not wlan.isconnected():
            pass
    print('network config:', wlan.ifconfig())
    
    ntptime.settime()
    wlan.disconnect()

connect_and_update_ntptime()
now_localtime =time.localtime(time.time() + TIME_OFFSET)
print(now_localtime)